Enrollment No: _	Exam Seat No:
	a a a

C.U.SHAH UNIVERSITY

Summer Examination-2019

Subject Name: Linear Algebra

Subject Code: 5SC01LIA1 Branch: M.Sc.(Mathematics)

Time: 02:30 To 05:30 Semester: 1 Date: 12/03/2019 Marks: 70

Instructions:

b)

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

		SECTION – I	
Q-1		Attempt the Following questions	(07)
	8	If v_1, v_2, \dots, v_n are in V then either they are linearly independent or some v_k is a linear combination of preceding one's v_1, v_2, \dots, v_{k-1} .	(02)
	ŀ	Let V be finite dimensional over F and $T \in A(V)$ show that the number of characteristic root of T is at most n^2 .	(02)
	(If A and B are finite dimensional subspaces of a vector space V, then $A + B$ is finite dimensional and $\dim(A + B) = \dim A + \dim B - \dim(A \cap B)$.	(02)
	(Define : Dual space	(01)
Q-2		Attempt all questions	(14)
	a)	Let V be a finite dimensional vector space over F and W be subspace of V. Show that W is finite dimensional, $\dim W \leq \dim V$ and $\dim V/W = \dim V - \dim W$.	(06)
	b)	If A and B are subspace of V prove that $\frac{A+B}{B} \cong \frac{A}{A \cap B}$	(05)
	c)	If V is a finite dimensional inner product space and W is subspace of V then show that $W = (W^{\perp})^{\perp}$	(03)
		OR	
Q-2		Attempt all questions	(14)
	a)	Let V and W be vector space over F of dimension m and n respectively. Then prove that $HOM(V, W)$ is of dimension mn over F .	(07)
	b)	Let V be a finite dimensional vector space over F , and W be a subspace of V then \widehat{W} is isomorphic to $\widehat{V} W^{\circ}$ and dim $W^{\circ} = \dim V - \dim W$.	(07)
Q-3		Attempt all questions	(14)
	a)	If V is finite dimensional over F, then prove that $T \in A(V)$ is invertible if and only if the constant term in the minimal polynomial for T is nonzero.	(05)

If \mathcal{A} is an algebra over F with unit element then prove that \mathcal{A} is isomorphic to a

(05)

subalgebra of A	(V)	for some vector space	V	over F

	c)		If <i>V</i> is finite dimensional over <i>F</i> , and let $S, T \in A(V)$ and <i>S</i> be regular, then prove that $\lambda \in F$ is characteristic root of <i>T</i> if and only if it is a characteristic root of $S^{-1}TS$.	(04)
			OR OR	
Q-3			Attempt all questions	(14)
	a)		Let V be finite dimensional over F and $T \in A(V)$. If $\lambda_1, \lambda_2, \dots, \lambda_k$ in F are distinct roots of T and v_1, v_2, \dots, v_k are characteristic vector of T corresponding to $\lambda_1, \lambda_2, \dots, \lambda_k$ respectively. Then v_1, v_2, \dots, v_k are linearly independent.	(05)
	b)		If V is finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V on to V.	(05)
	c)		Prove that $S \in A(V)$ is regular if and only if whenever $v_1, v_2, \dots, v_n \in V$ are linearly independent then $S(v_1), S(v_2), \dots, S(v_n)$ are also linearly independent.	(04)
			SECTION – II	
Q-4			Attempt the Following questions	(07)
		a.	If $A, B \in M_n(F)$ then show that $tr(A + B) = tr(A) + tr(B)$	(02)
		b.	Prove that there do not exists $A, B \in M_n(F)$ such that $AB - BA = I$, where F is field with characteristic 0.	(02)
			Find the inertia of quadratic equation $x_1^2 - x_3^2 - 4x_1x_2 + 4x_2x_3 = 0$. Define: Invariant	(02) (01)
Q-5			Attempt all questions	(14)
	a)		Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent then the invariants of T are unique.	(07)
	b)		Let V be a finite dimensional vector space over F and $T \in A(V)$. If all the characteristic roots of T are in F then there is a basis of V with respect to which the matrix of T is upper triangular.	(07)
			OR	
Q-5			Attempt all questions	(14)
	a)		Let V be a finite dimensional vector space over F and $T \in A(V)$. Suppose that $V = V_1 \oplus V_2$, where V_1 and V_2 are subspaces of V invariant under T . Let $T_1 = T _{V_1}$ and $T_2 = T _{V_2}$ if the minimal polynomial of T_1 over F is $p_1(x)$ while minimal polynomial of T_2 over F is $p_2(x)$. Then show that minimal polynomial of T over T is the least common multiple of T and T and T and T because T is the least common multiple of T and T and T because T is the least common multiple of T and T and T and T is the least common multiple of T and T and T are T is the least common multiple of T and T and T are T is the least common multiple of T and T are T are T and T are T and T are T and T are T are T and T are T are T and T are T and T are T are T and T are T are T and T are T and T are T are T and T are T are T and T are T and T are T are T and T are T are T and T are T and T are T are T and T are T are T and T are T and T are T are T and T are T and T are T and T are T are T are T and T are T are T and T are T and T are T are T and T are T are T and T are T are T are T are T and T are T are T and T are T and T are T are T and T are T and T are T are T and T are T and T are T and T are T and T are T are T are T and T are T and T are T are T are T are T are T and T are T and T are T are T are T are T and T are T are T are T and T are T are T and T are T are T are T are T are T and T are T are T and T are T and T are T are T and T are T are T and	(05)
	b)		Two nilpotent linear transformations are similar if and only if they have the same invariants.	(05)
	c)		Find the invariants of linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (y, 0, 0)$, where $x, y, z \in \mathbb{R}$.	(04)
Q-6			Attempt all questions	(14)
	a)		Let $f: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ be a map. Then f is bilinear if and only if there exist $\alpha_{ii} \in \mathbf{R}, 1 \leq i, j \leq n$ with $\alpha_{ii} = \alpha_{ii}$ such that $f(x, y) = \sum_{i=1}^{n} \alpha_{ii} x_i y_i$.	(05)

	b)	Let $A, B \in M_n(F)$, show that $\det(AB) = \det A \cdot \det B$.	(05)
	c)	Prove that determinant of a matrix and its transpose are same.	(04)
		OR	
Q-6		Attempt all Questions	
	a)	State and prove Cramer's rule.	(05)
	b)	Identify the surface given by $11x^2 + 6xy + 19y^2 = 80$. Also convert it to the	(05)
		standard form by finding the orthogonal matrix P .	
	c)	Prove that determinant of lower triangular matrix is product of its entries on main	(04)
		diagonal.	

