\qquad

C.U.SHAH UNIVERSITY

 Summer Examination-2019Subject Name: Linear Algebra
Subject Code: 5SC01LIA1

Branch: M.Sc.(Mathematics)
Semester: 1 Date: 12/03/2019
Time: 02:30 To 05:30
Marks: 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.
SECTION - I
Q-1 Attempt the Following questions(07)
a. If $v_{1}, v_{2}, \ldots \ldots . v_{n}$ are in V then either they are linearly independent or some v_{k} is a linear combination of preceding one's $v_{1}, v_{2}, \ldots \ldots \ldots . v_{k-1}$.
b. Let V be finite dimensional over F and $T \in A(V)$ show that the number of characteristic root of T is atmost n^{2}.
c. If A and B are finite dimensional subspaces of a vector space V, then $A+B$ is finite dimensional and $\operatorname{dim}(A+B)=\operatorname{dim} A+\operatorname{dim} B-\operatorname{dim}(A \cap B)$.
d. Define: Dual space

Q-2 Attempt all questions

a) Let V be a finite dimensional vector space over F and W be subspace of V. Show that W is finite dimensional, $\operatorname{dim} W \leq \operatorname{dim} V$ and $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.
b) If A and B are subspace of V prove that $\frac{A+B}{B} \cong \frac{A}{A \cap B}$
c) If V is a finite dimensional inner product space and W is subspace of V then show that $W=\left(W^{\perp}\right)^{\perp}$

OR

Q-2 Attempt all questions

a) Let V and W be vector space over F of dimension m and n respectively. Then prove that $\operatorname{HOM}(V, W)$ is of dimension $m n$ over F.
b) Let V be a finite dimensional vector space over \boldsymbol{F}, and W be a subspace of V then \widehat{W} is isomorphic to $\widehat{V} \mid W^{\circ}$ and $\operatorname{dim} W^{\circ}=\operatorname{dim} V-\operatorname{dim} W$.

Q-3 Attempt all questions

a) If V is finite dimensional over F, then prove that $T \in A(V)$ is invertible if and only if the constant term in the minimal polynomial for T is nonzero.
b) If \mathcal{A} is an algebra over F with unit element then prove that \mathcal{A} is isomorphic to a
subalgebra of $A(V)$ for some vector space V over F.
c) If V is finite dimensional over F, and let $S, T \in A(V)$ and S be regular , then prove that $\lambda \in F$ is chatracteristic root of T if and only if it is a characteristic root of $S^{-1} T S$.

OR

Q-3 Attempt all questions

a) Let V be finite dimensional over F and $T \in A(V)$. If $\lambda_{1}, \lambda_{2}, \ldots \ldots \ldots \lambda_{k}$ in F are distinct roots of T and $v_{1}, v_{2}, \ldots \ldots \ldots . v_{k}$ are characteristic vector of T corresponding to $\lambda_{1}, \lambda_{2}, \ldots \ldots \ldots . \lambda_{k}$ respectively. Then $v_{1}, v_{2}, \ldots \ldots \ldots . v_{k}$ are linearly independent.
b) If V is finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V on to V.
c) Prove that $S \in A(V)$ is regular if and only if whenever $v_{1}, v_{2}, \ldots \ldots \ldots v_{n} \in V$ are linearly independent then $S\left(v_{1}\right), S\left(v_{2}\right), \ldots \ldots \ldots . S\left(v_{n}\right)$ are also linearly independent.

SECTION - II

Q-4 Attempt the Following questions
a. If $A, B \in M_{n}(F)$ then show that $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
b. Prove that there do not exists $A, B \in M_{n}(F)$ such that $A B-B A=I$, where F is
field with characteristic 0 .
c. Find the inertia of quadratic equation $x_{1}{ }^{2}-x_{3}{ }^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}=0$.
d. Define: Invariant

Q-5 Attempt all questions

a) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent then the invariants of T are unique.
b) Let V be a finite dimensional vector space over F and $T \in A(V)$. If all the characteristic roots of T are in F then there is a basis of V with respect to which the matrix of T is upper triangular.

OR

Q-5 Attempt all questions

a) Let V be a finite dimensional vector space over F and $T \in A(V)$. Suppose that $V=V_{1} \oplus V_{2}$, where V_{1} and V_{2} are subspaces of V invariant under T. Let $T_{1}=\left.T\right|_{V_{1}}$ and $T_{2}=\left.T\right|_{V_{2}}$. if the minimal polynomial of T_{1} over F is $p_{1}(x)$ while minimal polynomial of T_{2} over F is $p_{2}(x)$. Then show that minimal polynomial of T over F is the least common multiple of $p_{1}(x)$ and $p_{2}(x)$.
b) Two nilpotent linear transformations are similar if and only if they have the same invariants.
c) Find the invariants of linear transformation $T: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{3}$ defined by
$T(x, y, z)=(y, 0,0)$, where $x, y, z \in \boldsymbol{R}$.

Q-6 Attempt all questions

a) Let $f: \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ be a map. Then f is bilinear if and only if there exist
$\alpha_{i j} \in \boldsymbol{R}, \mathbf{1} \leq \boldsymbol{i}, \boldsymbol{j} \leq \boldsymbol{n}$ with $\alpha_{i j}=\alpha_{j i}$ such that $f(x, y)=\sum_{i, j=1}^{n} \alpha_{i j} x_{i} y_{j}$.
b) Let $A, B \in M_{n}(F)$, show that $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$.
c) Prove that determinant of a matrix and its transpose are same.

OR

Q-6
Attempt all Questions
a) State and prove Cramer's rule.
b) Identify the surface given by $11 x^{2}+6 x y+19 y^{2}=80$. Also convert it to the standard form by finding the orthogonal matrix P.
c) Prove that determinant of lower triangular matrix is product of its entries on main diagonal.

